SYNTHESIS OF A POTENTIAL INHIBITOR OF UDP-GLUCURONOSYLTRANSFERASE

D. Noort*, N.C.R. van Straten*, G.J.P.H. Boons*, G.A. van der Marel*, X. Bossuyt*, N. Blanckaert*, G.J. Mulder*, J.H. van Boom*

*Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden; Division of Toxicology, Center for Bio-Pharmaceutical Sciences, P.O. Box 9503, 2300 RA Leiden, The Netherlands; Laboratory of Biological Chemistry, University of Leuven, B-3000 Leuven, Belgium

(Received 3 March 1992)

Abstract: A convenient synthesis of phosphonomethyl $1-O-(2,2,2-\text{triphenyl})\text{ethyl-}\alpha-D-gluco-2-heptulopyranosiduronate}$ (2) is presented. The target compound proved to be an inhibitor of UDP-glucuronosyltransferase in vitro.

Glucuronidation of hydroxyl, thiol, amino or carboxylate functions in xenobiotics and endogenous compounds [e.g. RXH; X=O, S, NH or C(O)O] is a major detoxification pathway catalyzed by UDP-glucuronosyltransferases (UDPGT)¹. It has been proposed² that the glucuronidation reaction proceeds via transition-state A (see Figure 1) resulting from the attack of an aglycon RXH on the anomeric centre of

the sugar nucleotide UDP-glucuronic acid. Collapse of the transition state (TS) will yield uridine 5'-diphosphate (UDP) and the \(\beta\)-glucuronide \(\beta\), which is readily excreted due to the hydrophilicity of the glucuronic acid moiety.

Glucuronidation also plays a pivotal role in drug metabolism and it may thus be anticipated that UDPGT inhibition could improve the therapeutic efficiency of a drug. For example, the anti-Human

D. Noort et al.

Immunodeficiency Virus drug 3'-azido-3'-deoxythymidine (AZT) is rapidly metabolized via glucuronidation and excreted as its glucuronide³.

Recent studies in our laboratories revealed that the TS-analogue 2,2,2-triphenylethyl-UDP (1), which contains both a uridine and an aglycon moiety, was not only inhibitory towards UDPGT activity in the microsomal fraction from rat liver², but also in an intact cellular system *in vitro* (i.e. isolated rat hepatocytes)⁴.

We here report the synthesis of phosphonomethyl 1-O-(2,2,2-triphenyl)ethyl- α -D-gluco-2-heptulopyranosiduronate (2) which exerts a distinct inhibitory effect on UDPGT activity in vitro.

The design and synthesis route to the new TS-analogue 2 is based on the following heuristic considerations. Thus, in view of the strong inhibitory effect of 1 on UDPGT activity, it would be reasonable to incorporate the triphenylethyl (TPE) moiety. Further, replacement of the UDP unit by a more stable

Scheme 1^a OR ΘEt ÓR OR ÒR 7 3 (R=benzyl) 5 (Trt=trityI) .OTrt ^aKey: i) Tebbe's reagent (4), toluene/THF. ii) IDCP, 6, ÖΕt OR 1,2-dichloroethane/diethyl ether. iii) LiOCH2CPh3. 8

phosphonomethylene⁵ function will shorten the synthetic route. In addition, the recently reported⁶ stereospecific iodonium ion promoted reaction of exocyclic glycals (e.g. 5) with alcohols resulting in 1-iodoheptulosides enables the construction of the requisite configuration at the anomeric centre.

A first attempt to assemble target compound 2 is outlined in Scheme 1 and commences with the introduction of the phosphonomethylene function. Thus, iodonium sym-dicollidine perchlorate⁷ (IDCP) assisted condensation of diethyl(hydroxymethyl)phosphonate⁸ (6) with 2,6-anhydro-3,4,5-tri-O-benzyl-1-deoxy-7-O-trityl-D-gluco-hept-1-enitol (5), prepared by methylenation of readily accessible lactone 3° with Tebbe's reagent¹⁰ (4), gave the expected α -ketoside¹¹ 7^{12} (m.p. 135°C; α_D^{20} +54.4°) in 84% yield. Unfortunately, direct replacement of the iodine atom in 7 by lithium 2,2,2-triphenylethoxide, giving fully protected 8, was abortive¹³.

586 D. Noort et al.

An alternative pathway to compound 2 is presented in Scheme 2. A key element of this pathway is the introduction, at an early stage of the synthesis, of the TPE unit *via* the organolithium reagent 11. The latter was readily accessible by tin/lithium exchange¹⁴ of the corresponding tributylstannane derivative 10 which, in turn, was prepared by the reaction of 9 with iodomethyl tributylstannane according to Seyferth¹⁵. Addition of the properly protected D-gluconolactone 12¹⁶ to 11, generated *in situ* by quenching 10 with *n*-butyllithium, led to the exclusive formation of the anomerically pure¹¹ 1-O-(2,2,2-triphenyl)ethyl- α -D-gluco-heptulopyranose 13 in 86% yield (α_p^{20} +40.1°).

The phosphonate function was now introduced by the following two-step procedure. Treatment of 13 with diethylaminosulfur trifluoride (DAST)¹⁷ furnished the stable ketoglycosyl fluoride 14 (α /ß mixture) in a quantitative yield. Glycosylation of diethyl(hydroxymethyl)phosphonate (6) by the ketopyranosyl fluoride 14 in the presence of the promoter SnCl₂/AgClO₄¹⁸ gave, after purification, the fully protected α -linked¹¹ phosphonomethyl derivative 15 (α ₀²⁰ +34.2°) in 52% yield.

At this stage, the silyl protecting group of HO-7 in 15 was removed and the resulting hydroxyl was converted into the required carboxylate methyl ester. Thus, removal of the *tert*-butyldiphenylsilyl group with fluoride ions afforded homogeneous 16 (yield 92%; α_D^{20} +29.3°). Oxidation of 16 could be realized most effectively¹⁹ with Jones reagent²⁰ to give, after methylation of the carboxylate group with diazomethane, fully protected 17 (overall yield 60%; α_D^{20} +48.7°).

Complete deblocking of 17 to give the target compound 2 was executed as follows. Hydrogenolysis of the benzyl groups followed by acetylation of 18 yielded homogeneous 19. Hydrolysis of the phosphonate diethyl ester by trimethylsilyl bromide $(TMSBr)^{21}$ and subsequent addition of MeOH/H₂O afforded 20. Finally, deesterifation of 20 resulted, after purification and conversion (Dowex 50 W, Na⁺-form) into the trisodium salt, in the isolation of homogeneous 2 $[\alpha_p^{20} + 59.3^{\circ} \text{ (c 1, H₂O)}]$.

Preliminary biological studies indicated that the TS-analogue 2, in a 20-fold excess with respect to UDP-glucuronic acid, acts as an inhibitor of 4-methylumbelliferone (78% inhibition) and bilirubin (41% inhibition) glucuronidation in a rat liver microsomal fraction. A detailed study on the inhibitory effect of 2 will be published in due course.

Acknowledgement. This work was supported by a grant from the Foundation for Medical Research MEDIGON.

References and Notes

- 1. Mulder, G.J.; Coughtrie, M.W.H.; Burchell, B. Conjugation Reactions in Drug Metabolism. An Integrated Approach; Mulder G.J., Ed.; Taylor and Francis: London, pp 51-106, 1990.
- Noort, D.; Coughtrie, M.W.H.; Burchell, B.; Van der Marel, G.A.; Van Boom, J.H.; Van der Gen, A.; Mulder, G.J. Eur. J. Biochem. 1990, 188, 309.
- 3. Resetar, A.; Spector, T. Biochem. Pharmacol. 1989, 38, 1389.
- Noort, D.; Meijer, E.A.; Visser, T.J.; Meerman, J.H.N.; Van der Marel, G.A.; Van Boom, J.H.; Mulder, G.J. Molec. Pharmac. 1991, 40, 316.

- 5. Holy, A. Nucleosides and Nucleotides 1987, 6, 147.
- 6. Noort, D.; Veeneman, G.H.; Boons, G.J.P.H.; Van der Marel, G.A.; Mulder, G.J.; Van Boom, J.H. Synlett, 1990, 205.
 - Recently, similar iodonium-ion mediated glycosylation reactions were reported by others. See for instance: Haudrechy, A.; Sinaÿ, P. *Tetrahedron Lett.* 1990, 31, 5765. Thiem, J.; Kleeberg, M. *Carbohydrate Res.* 1990, 205, 333.
- 7. Lemieux, R.U.; Morgan, A.R. Can. J. Chem. 1965, 43, 2190.
- 8. Kluge, A.F. Org. Synth. 1986, 64, 80.
- Lactone 3 was prepared by regioselective tritylation (trityl chloride/pyridine) of 2,3,4-tri-O-benzyl-α/β-D-glucopyranose followed by Swern oxidation.
- 10. Cannizzo, L.F.; Grubbs, R.H. J. Org. Chem. 1985, 50, 2386.
- The α-configuration of compounds 7, 13 and 15 was inter alia assigned on the basis of the characteristic chemical shift (3.9-4.1 ppm) and pattern (dd, J_{3,4}≈J_{4,5}=9.0-9.5 Hz) of the proton at the C-4 position. See also: Nicotra, F.; Panza, L.; Russo, G. Tetrahedron Lett. 1991, 32, 4035.
- 12. Satisfactory elemental analytical data were obtained for compounds 2, 5, 7, 10, 12, 13, 14, 15, 16, 17 and 19. Optical rotations were measured in CHCl₃ (c 1) unless stated otherwise. Relevant ¹H NMR data (300 MHz; δ in ppm) of compounds 2, 5, 7, 13, 17 and 19: 2: δ 4.9-4.5 (AB, 2H, -C<u>H</u>₂CPh₃; J=9.7 Hz); 3.95-3.75 (AB, 2H, H₁+H₁; J=11.2 Hz), 3.55-3.35 (m, 2H, CH_2P). 5: δ 6.95 (m, 2H, = CH_2). 7: δ 4.1 (m, 4H, 2x CH_2CH_3), 3.9 (dd, 1 H, H_4); 3.8-3.7 (m, 2H, CH₂P), 3.6-3.4 (AB, 2H, CH₂I; J=10.9 Hz), 1.2 (t, 6H, 2x CH₃). 13: δ 4.5 (AB, 2H, CH₂CPh₃), 4.0 (dd, 1H, H₄), 3.5 (AB, 2H, H₁+H₁; J=11 Hz). 1.0 (s, 9H, 3x CH₃-TBDPS). 15: δ 4.1 (m, 4H, 2x CH_2CH_3), 3.95 (dd, 1H, H_4), 3.9-3.6 (AB, 2H, H_1+H_1 ; J=11.0 Hz), 1.2 (m, 6H, 2x CH_2CH_3). 17: 3.32 (s, 3H, OCH₃). 19: δ 4.6-4.3 (AB, 2H, CH₂CPh₃; J=9.6 Hz), 4.1-4.2 (m, 4H, OCH₂CH₃), 3.7 (s, 1H, OCH₃), 3.7-3.2 (m, 4H, H₁+H₁, CH₂P), 2.0-1.8 (3x s, 9H, 3x CH₃, acetyl), 1.2 (m, 6H, 2x CH₂CH₃). Relevant ¹³C {¹H} NMR data (50.1 MHz; δ in ppm) of compounds 2, 5, 7, 13, 14, 15 and 17: 2: δ 177.5 (C=O), 146.2 (C₀, CPh₃), 101.0 (d, C₂; $J_{COC,F}=10.0$ Hz), 79.3 (CH₂CPh₃), 70.2 (C₁), 59.8-57.9 ($CH_2P + CPh_3$). 5: δ 156.5 (C_2), 94.4 (C_1). 7: δ 100.4 (d, C_2 ; $J_{C-OC,P}=10.3$ Hz), 62.5 (m, CH_2CH_3). + C_7), 56.8-53.4 (d, CH_2P ; J_{C_2} =172 Hz), 16.1 (d, CH_3 ; $J_{P,O,C,C}$ =6.0 Hz). 13: δ 145.5 (C_9 , CPh_9), 97.6 (C_2), 79.4 (CH_2CPh_3), 72.1 (C_1), 57.6 (C_2 , CPh_3). 14: δ 115.5-111.0 (d, C_2 ; $J_{CF}=226$ Hz). 15: δ 101.6 (d, C_2 ; $J_{COCP}=10.3$ Hz), 71.0 (C₁), 63.5-62.4 (m, $QH_2CH_3 + C_7$), 57.4-53.9 (d, QH_2P , $J_{CP}=173$ Hz), 16.4 (d, CH_2CH_3 ; $J_{POCC}=5.9$ Hz). 17: δ 169.5 (C=O), 102.4 (d, C_2 ; $J_{COCF}=10.3$ Hz), 69.8 (C_1), 52.3 (OCH₃). Relevant ³ⁱP NMR data (δ in ppm) of compounds 2, 7, 15, 16 and 17:
 - 2: δ 18.1; 7: δ 20.5; 15: δ 20.4; 16: δ 20.4; 17: δ 20.9.
- 13. It was also established that nucleophilic substitution could not be effected, in contrast with expectation, by cesium acetate in HMPA. See ref. 6 (Haudrechy et al.).
- 14. Still, W.C. J. Am. Chem. Soc. 1978, 100, 1481.
- 15. Seyferth, D.; Andrews, S.B. J. Organomet. Chem. 1971, 30, 151.
- 16. Lactone 12 was prepared by regioselective silvlation (tert-butyldiphenylsilyl chloride/pyridine) of 2,3,4-

588 D. Noort et al.

- tri-O-benzyl-\alpha/\beta-D-glucopyranose followed by Swern oxidation.
- 17. Rosenbrook, Wm., Jr.; Riley, D.A.; Lartey, P.A. Tetrahedron Lett. 1985, 26, 3.
- 18. Mukaiyama, T.; Murai, Y.; Shoda, S. Chem. Lett. 1981, 431.
- 19. Attempts to convert 16 in the carboxylate methyl ester derivative 17 via the two-step method of McDonald et al. (i.e. Swern oxidation of HO-7 and subsequent NIS/MeOH mediated conversion of the resulting aldehyde function) were not successful. See: McDonald, C.; Holcomb, H.; Kennedy, K.; Kirkpatrick, E.; Leathers, T.; Vanemon, P. J. Org. Chem. 1989, 54, 1213.
- 20. Fügedi, P. J. Carbohydr. Chem. 1987, 6, 377.
- 21. McKenna, C.E.; Higa, M.T.; Cheung, N.H.; McKenna, M.C. Tetrahedron Lett. 1977, 155.